Proton pumping by cytochrome c oxidase.

نویسنده

  • H Michel
چکیده

Proton Pumping in Cotychrome c Oxidase by Jianxun Lu Advisor: Professor Marilyn Gunner Cytochrome c oxidase (CcO) is a large trans-membrane protein, which is the final enzyme in the respiratory electron transport chain in mitochondria or aerobic bacteria. It implements proton pumping through the mitochondrial membrane against the electrochemical gradient, by utilizing the chemical energy released by reducing O2 to water. The active site of the chemical reaction is called the Binuclear Center (BNC) that is made up of heme a3, CuB, a Tyrosine residue and their ligands. The protein is reduced four times by electron from cytochromes c to reduce O2 and to generate four different BNC redox states step by step. In each reduction step a proton is delivered to the BNC and another proton is pumped across the protein to increase the trans-membrane proton gradient. In CcO, the pumped proton is firstly located in the proton loading site (PLS), and then is released out of the protein. In these processes, a high conserved Glutamate residue, plays an essential role on the proton translocation either to the BNC or the PLS. In this thesis, Multi-Conformational Continuum Electrostatics (MCCE) and Molecular Dynamics (MD) are combined to study the proton affinity (pKa) of the high conserved Glutamate residue and the identity of the PLS. This Glutamate residue is located in a hydrophobic cavity in the protein, and the simulations show that the hydration of the cavity is controlled by the protonation state of the propionic acid of heme a3, a group on the proton outlet pathway. The changes in hydration and electrostatic interactions lower the proton affinity by at least 5 kcal/mol. The identity of the residues in the PLS is another open question in CcO research, and various groups above the BNC have been considered as candidates. We designed a new model for the simulation via separating the catalytic cycle into smaller substates and monitoring

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new infrared analysis shows a critical roll of a Cu site of cytochrome c oxidase for the energy-coupling

Background: Cytochrome c oxidase reduces O2 coupled with proton-pumping. Results: A newly developed time-resolved infrared system reveals transient conformational changes in the proton-pumping pathway upon CO-binding to CuB in the O2 reduction site. Conclusion: CuB promotes proton collection and effective blockage of back-leak of pumping-protons. Significance: These critical findings in Bioener...

متن کامل

Cytochrome c oxidase: catalytic cycle and mechanisms of proton pumping--a discussion.

Cytochrome c oxidase catalyzes the reduction of molecular oxygen to water, a process in which four electrons, four protons, and one molecule of oxygen are consumed. The reaction is coupled to the pumping of four additional protons across the membrane. According to the currently accepted concept, the pumping of all four protons occurs after the binding of oxygen to the reduced enzyme and is excl...

متن کامل

Structural Changes and Proton Transfer in Cytochrome c Oxidase

In cytochrome c oxidase electron transfer from cytochrome c to O2 is linked to transmembrane proton pumping, which contributes to maintaining a proton electrochemical gradient across the membrane. The mechanism by which cytochrome c oxidase couples the exergonic electron transfer to the endergonic proton translocation is not known, but it presumably involves local structural changes that contro...

متن کامل

Mutation of a single residue in the ba3 oxidase specifically impairs protonation of the pump site.

The ba3-type cytochrome c oxidase from Thermus thermophilus is a membrane-bound protein complex that couples electron transfer to O2 to proton translocation across the membrane. To elucidate the mechanism of the redox-driven proton pumping, we investigated the kinetics of electron and proton transfer in a structural variant of the ba3 oxidase where a putative "pump site" was modified by replace...

متن کامل

Proton-coupled electron transfer and the role of water molecules in proton pumping by cytochrome c oxidase.

Molecular oxygen acts as the terminal electron sink in the respiratory chains of aerobic organisms. Cytochrome c oxidase in the inner membrane of mitochondria and the plasma membrane of bacteria catalyzes the reduction of oxygen to water, and couples the free energy of the reaction to proton pumping across the membrane. The proton-pumping activity contributes to the proton electrochemical gradi...

متن کامل

The cytochrome c oxidase from Paracoccus denitrificans does not change the metal center ligation upon reduction.

Cytochrome c oxidase catalyzes the reduction of oxygen to water. This process is accompanied by the vectorial transport of protons across the mitochondrial or bacterial membrane ("proton pumping"). The mechanism of proton pumping is still a matter of debate. Many proposed mechanisms require structural changes during the reaction cycle of cytochrome c oxidase. Therefore, the structure of the cyt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nature

دوره 402 6762  شماره 

صفحات  -

تاریخ انتشار 1999